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Figure 7. Examples of the ambient-noise Green’s functions used in local full 3-D tomography. Grey star: the location of the ‘source’ station, RCT; coloured
triangles: other ‘receiver’ stations for which the ambient-noise Green’s functions have acceptable signal-to-noise ratios, the colour on those triangles indicates
the group-delay measurements at the dominant frequency. Black lines: ambient-noise Green’s functions; red lines: synthetic Green’s functions; the black and
red horizontal bars indicate the waveforms selected by our automated algorithm.
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Figure 8. Examples of the waveform selection process as discussed in Section 2.4. The seismograms are from an earthquake (event ID: 9095528) and are used
in our full 3-D waveform tomography for crustal structure in Southern California. In each example, the first vertical dash line indicates the time 5 s before the
estimated P arrival time and the second vertical dash line indicates the time 30 s after the estimated surface wave arrival time. The numbers, (1), (2) and (3),
correspond to the three different steps discussed in Section 2.4.

waves and to 0.5 for surface waves. The allowed maximum cross-
correlation time-shift was increased to 20 s for body waves and to
25 s for surface waves. In general, the number of waveforms picked
automatically by our algorithm increases with source–receiver dis-
tance. At station CTAO, which is 29◦ from the epicentre, the num-
ber of picked waveforms is 8; while at station DRLN, which is
128◦ from the epicentre, the number of picked waveforms is 24
(Fig. 9).

4 S U M M A RY A N D D I S C U S S I O N

The purpose of this study is to develop a semi-automatic seis-
mic waveform analysis tool that can be used in full 3-D wave-
form inversions and other types of seismological studies that may
require waveform separation and selection. Our algorithm con-
sists of three major components: seismogram pre-processing, seis-
mogram segmentation and waveform selection. Our seismogram
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Figure 9. Examples of teleseismic earthquake recordings. Yellow star: epicentre location of the 2007 July 26 Mw 6.9 northern Molucca sea earthquake; red
triangles: stations that have usable waveforms; blue lines: the source-station pairs whose seismograms are shown. Three histograms show the distribution
of NCC, broad-band cross-correlation time-shift and amplitude ratio for all selected waveforms. Black lines: observed seismograms; red lines: synthetic
seismograms; black horizontal bars: selected observed waveform; red horizontal bars: selected synthetic waveform. Dash-line boxes indicate the portions of
the seismograms that have been amplified to show the waveform details.
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segmentation algorithm is based on segmenting the scalogram in
the time–frequency domain using a topological watershed method.
A set of criteria is proposed to select observed and synthetic wave
packets that can be used for extracting waveform misfit measure-
ments. We have demonstrated the usefulness of our algorithm using
earthquake seismograms and ambient-noise Green’s functions at
local, regional and teleseismic distances in waveform inversions for
CMT parameters and earth structure models. Using those examples,
we also gave some suggested values for the parameters that control
the behaviour of our algorithm for different types of seismic data.

The performance of our seismogram segmentation algorithm de-
pends upon both the seismogram being segmented and the resolution
of the time–frequency domain scalogram. An important limitation
of our algorithm is that it would not be able to separate different
phases if they have significant overlap in the time–frequency do-
main. If that is the case, we may need to explore additional condi-
tions that can be used for wave arrival separation. The resolution of
the time–frequency domain scalogram is determined by the wavelet
transform and the mother wavelet. Other types of time–frequency
transforms such as the short-time Fourier transform can also be
adopted. Depending upon how well the different phases are sepa-
rated in time and in frequency, one can improve the resolution in
time or in frequency by adjusting the mother wavelet. However,
any improvement of resolution in time (frequency) can reduce the
resolution in frequency (time). For wave arrivals that are well sepa-
rated in the time domain, we do not expect our algorithm to provide
results that are significantly different from FLEXWIN.

At the current stage, the appropriate values for the pre-set pa-
rameters listed in Table 1 still need to be assigned or fine-tuned
manually through a trial-and-error process for different data sets or
different applications. In recent years, the artificial neural network
(ANN) has been adopted to perform certain seismic data processing
tasks with different degrees of success (e.g. Shimshoni & Intrator
1998; Del Pezzo et al. 2003; Scarpetta et al. 2005; Dai & MacBeth
2007; Valentine & Woodhouse 2010). In Diersen et al. (2011), we
applied an importance-aided neural network (IANN) to the wave-
form selection process and tested it against a set of manual picks
using the ambient-noise Green’s functions collected in Southern
California. A set of 15 criteria, including those listed in Section
2.4, was built into the IANN with different weights. This IANN
was trained using 1250 manual picks (about one tenth of our total
ambient-noise Green’s function data set) and then tested using 504
examples previously unseen by the IANN. Out of 504 test exam-
ples, the IANN gave zero false negatives and two false positives
(i.e. accepted two wave packets that were rejected in the manual
pick), a success rate of about 99.6 per cent. More experiments on
different types of data sets still need to be conducted to fully test
the robustness of the IANN implementation.
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A P P E N D I X A

The topological watershed algorithm proceeds by iteratively lower-
ing the altitude of some points satisfying a destructibility condition
until no such points exist. Suppose G = (E, �, F) is a weighted
graph, where E is the set of vertices (points), � corresponds to an
adjacency relation between the points in E and F is a function rep-
resenting a grey-scale mapping, that is, for any point x ∈ E , F(x) is
the grey level (altitude) of the point x. Two points p0, pk ∈ E are said
to be connected if there exits an ordered family of points (i.e. a path)
(p0, p1, . . . , pk) such that pi+1 ∈ �(pi ). A subset X ⊆ E is said to
be a connected component of E is any two points in X are connected.
A level k cross-section of F is defined as Fk = {p ∈ E, F(p) ≥ k}.
A point x is said to be W-destructible for F if its altitude can be low-
ered by one unit without changing the number of connected com-
ponents of the level-set F̄k = {p ∈ E, F(p) < k}, with k = F(x).
A W-thinning of F is a map obtained by iteratively selecting a W-
destructible point and lowering its altitude by one unit. A topological
watershed of F is a W-thinning of F that contains no W-destructible
points. A fast implementation can be obtained if a W-destructible
point is not lowered by only one altitude unit at a time, but by
an amount as large as possible. The lowest value to which a W-
destructible point can be lowered can be computed by searching
for the lowest common ancestor of neighbouring components in a
component tree (i.e. a hierarchical representation of the connected
components at cross-sections of increasing altitude; Couprie et al.
2005).

A P P E N D I X B

Full 3-D sensitivity (Fréchet) kernels with respect to structural pa-
rameters can be computed using the scattering-integral (SI) method
(e.g. Zhao et al. 2005) or the adjoint wavefield (AW) method (e.g.
Tromp et al. 2005; Liu & Tromp 2006) for an arbitrary segment
on the time-domain seismogram. The connection between the SI
and AW methods, as well as the differences in their computational
requirements, were documented in Chen et al. (2007b). In the fol-
lowing we show how the Fréchet kernels can be constructed for an
arbitrary target waveform obtained through a filtering operation in
the wavelet domain. The notations follow Chen et al. (2007b).

For a certain data functional dsr
in that measures the misfit between

the observed and the synthetic waveforms, we introduce the ‘seis-
mogram perturbation kernel’ J sr

in (t), which is the integration kernel
for the Fréchet derivative of dsr

in with respect to the target waveform
us

i (xr , t),

δdsr
in =

+∞∫
−∞

J sr
in (t)δus

i (xr , t) dt, (B1)

where s, r, i, n are indices for source, receiver, component and
measurement. Examples of data functionals and their corresponding
seismogram perturbation kernels were given in Chen et al. (2007b).
The derivation of the adjoint source, which is very close to our

definition of the seismogram perturbation kernel, for multitaper
measurements can be found in Zhou et al. (2011). Suppose the target
waveform us

i (xr , t) can be obtained from the complete displacement
seismogram ss

i (xr , t) through a filtering operation in the wavelet
domain using a weighting function W (a, b), which can be obtained
using the topological watershed algorithm. Considering the forward
and inverse continuous wavelet transform in eqs (3)–(4), we have

us
i (xr , t)

= 2
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⎦ . (B2)

Bring eq. (B2) into (B1) and exchange the integration over t and the
integration over t’, we obtain,

δdsr
in =

+∞∫
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J sr
in (t)δus
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=
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where, in the last step, we have changed the variables t ↔ t ′ and
the integration kernel Lsr

in(t) is defined as,

Lsr
in(t) ≡ 2
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The perturbation of the displacement seismogram δss
i (xr , t ′) can be

related to the structural parameters, density ρ(x) and elastic moduli
c jklm(x), through the Born approximation (Dahlen & Tromp 1998).
Using the SI method, the Fréchet kernels with respect to density and
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Figure B1. Full 3-D P-velocity sensitivity kernels of the broad-band cross-correlation traveltime delays for the waveforms shown in Figs 4(h)–(l). Cross-section
views perpendicular to the source-receiver plane are shown. Grey star: the explosive source location; grey triangle: receiver location. Warm colours represent
negative sensitivity (i.e. an increase in P-velocity will lead to a decrease in the cross-correlation delay time) and cool colours represent positive sensitivity (i.e.
an increase in P-velocity will lead to an increase in the cross-correlation delay time). (a) The kernel for the waveform within the time window 1.45–1.95 s,
which is a combination of PP, pPP and the Rayleigh wave; (b) the kernel for the PP phase; (c) the kernel for the pPP phase; (d) the kernel for the Rayleigh wave.

elastic moduli are given by

K ρ

dsr
in

(x) = −
∫

dt

∫
dτ Lsr

in(t)
∑

j

G ji (x, t − τ ; xr )∂2
τ ss

j (x, τ ),

(B5)

K
c jklm

dsr
in

(x) = −
∫

dt

∫
dτ Lsr

in(t)∂k G ji (x, t − τ ; xr )∂l s
s
m(x, τ ),

(B6)

where G ji (x, t − τ ; xr ) is the receiver-side Green’s tensor (Zhao
et al. 2005; Zhao et al. 2006). If the adjoint method is used
for computing the kernels, the adjoint source (e.g. Tromp et al.
2005) is given by the misfit-weighted, time-reversed Lsr

in(t). Ex-
amples of full 3-D Fréchet kernels of wide-band cross-correlation
traveltime delay with respect to P-wave speed for the Rayleigh
wave, PP and pPP waves shown in Figs 4(g)–(l) are plot-
ted in Fig. B1. The kernels were computed using the adjoint
method.
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